

Development: Den Delimarsky

PM & Testing: Clint Rutkas, Dan Fernandez

Code Review: Brian Peek

Design: Arturo Toledo, Rick Barraza

Audio: David Walliman

https://twitter.com/denniscode
https://twitter.com/clintrutkas
https://twitter.com/danielfe
https://twitter.com/brianpeek
http://www.toledo2.com/
https://twitter.com/rickbarraza
http://davidwallimann.com/

1 | Fall Fury

Chapter 1 ð Introduction

In late May, I arrived in Redmond to work as an intern on the Channel9 team. I had the freedom to choose what
I was going to work on, so I decided to challenge myself and work outside my comfort zone, util izing less C# and
managed code and more C++ and DirectX. To do so, I decided to highlight the capabilities of Windows 8ɂthatȭs
how FallFury was born.

FallFury is a 2D platformer in which the player controls a falling bear, trying to avoid obstacles, dodge missiles,
and destroy monsters as the bear falls. The project incorporates several of the new Windows 8 APIs, including
the accelerometer and touch as well as integrations with core OS capabilities such as settings and share charms.
Additionally, the project leverages the most exacting addition to the Visual Studio development environmentɂ
hybrid application development with XAML, C++, and DirectX.

Design & Idea

From the outset, Rick Barraza and I decided that since our target audience was composed of both kids and
adults, the main character had to be familiar to both groups. Teddy bears turned out to be the best choice. Rick
spent a day creating tens of potential bear drawingsɂout of which I had to choose one:

2 | Fall Fury

As the ÂÅÁÒȭÓ fall progresses, the character encounters a variety of obstacles dependent on the level type and
complexity. Those obstacles should of course be avoided, so as the user tilts the device, the character in the game
moves in the associated direction.

The design of the project took a week, and during this time the following items were determined and
conceptualized. Considerations for both tablet and desktop environments directed our decisions:

¶ The main character layout.

¶ The way the game progresses as the character falls down.

¶ How the user interacts with the game in a wide variety of possible scenarios.

¶ What the game screens look like.

¶ What the menu system interaction looks like.

¶ How the game looks in different screen modes and on different device types.

¶ Some of the bonuses that the main character can pick up during free fall.

¶ What happens when the user progresses through the game and iterates through levels.

¶ What is shared and how this is accomplished.

As the game ideas were outlined, Arturo Toledo, the designer behind ux.artu.tv, was brought on to create the
game assets. Then the core design decisions were made and we jumped into the development process.

Beginning the development

You will need to download and install Microsoft Visual Studio 2012 Express for Windows 8 in order to be able to
follow the steps that I am describing in this series. The development has to be done on Windows 8, because the
end result is a Windows Store application that relies on Windows 8 APIs. Though specific hardware is not
required, both ARM and x86 devices will work well, so whether you have a Microsoft Surface RT or Samsung
Series 7 slate, you will be able to test the code when you have the opportunity.

To get started, open Visual Studio 2012 and select the C++ project types. You will notice that there are several
options you can choose from. You want to create a Windows Store application, so choose the appropriate
category. Windows Store applications run in a sandbox, outside the boundaries of the standard .NET runtime.

Next, select the Direct2D (XAML) app type from the project list . This is a new application type introduced in
Visual Studio 2012 that allows developers to combine native DirectX graphics with XAML overlays. Do not be
confused by the fact that there is a Direct2D in the nameɂyou can still invoke DirectX capabilities supported in
the WinRT sandbox:

http://ux.artu.tv/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/15/combining-xaml-and-directx.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/15/combining-xaml-and-directx.aspx

3 | Fall Fury

At this point you might be wondering , why choose a hybrid application instead of a fully-native project? The
reason behind this decision is that is allows the developer to focus more on fine-tuning the gameplay instead of
creating the UI core in pure DirectX. Because XAML is a part of the game, we can create dynamic UI layouts for
the HUD, settings charm and menus without touching the graphical backbone. It is possible to do the same
directly through DirectX and was a perfect approach for FallFury, considering the time constraints and the fact
that I needed minimal UI overlays. Most of the graphics were already processed through the DirectX pipeline, so
I did not have to invest significant resources and time into designing low-level structures for the interactivity
layer.

FallFury uses XAML for the following:

¶ Menus ɀ depending on the screen, the user is able to trigger a number of actions. For example, when the

game starts, the user might select the New Game option or decide to take a look at the About screen. In

Paused mode, the menu is used to resume the game, adjust settings, or possibly skip a level.

¶ Game HUD (score indicator, pick-up indicator, health indicator) ɀ during the gameplay, the user is

interested in keeping track of where the character is and what is the state of it. The game HUD is shown

in active game mode.

¶ Settings charm extensions ɀ the way the Settings charm works, the OS provides the core harness to

hook to the Settings popup. Once shown, it is up to the developer to provide a multitude of options that

customize the application behavior; any additional popups shown on selection should be designed

individually in XAML.

¶ User notification ɀ when something happens that can potentially affect the gameplay, the user should

be alerted. The core framework provides the capabilities to use a MessageDialog, but in some cases it

might not be enough. For example, if new levels are available for download, the user might want to check

those out in a custom popup including full previews rather than just text.

When you create the project, a default infrastructure that print s text on the screenɂboth through Direct2D and
XAMLɂis available. Direct2D is a subset of DirectX APIs and facilitates hardware-accelerated 2D graphics

4 | Fall Fury

processing. It is used to create basic geometry elements and text. Since I am here working mostly with XAML, I
am not going to cover Direct2D in-depth in this article :

I will go into more details regarding the XAML and DirectX interaction model later in the series, but for now,
take a look at which parts of the project you have available. First and foremost, you probably notice the
combination of both C++ source and header files and DirectXPage.xaml . Starting with Visual Studio 2012, you
are now able to create XAML applications in C++. So even if you are an experienced C++ developer who never
worked with the Extensible Application Markup Language, you can create the product core in your familiar
environment and either import existing XAML structures or delegate the XAML writing to a designer.

)Æ ÙÏÕ ÏÐÅÎ ÔÈÅ 8!-, ÐÁÇÅȟ ÙÏÕ ×ÉÌÌ ÎÏÔÉÃÅ ÏÎÅ ÓÉÇÎÉÆÉÃÁÎÔ ÃÈÁÎÇÅ ÔÈÁÔ ÙÏÕ ÈÁÖÅÎȭÔ ÅØÐÅÒÉÅÎÃÅÄ ÉÎ ÓÔÁÎÄÁÒÄ
XAML applications, such as WPF or Silverlight for Windows Phone:

<SwapChainBackgroundPanel x:Name="SwapChainPanel" PointerMoved="OnPointerMoved"
 PointerReleased="OnPointerReleased">
 <TextBlock x:Name="SimpleTextBlock" HorizontalAlig nment="Center" FontSize="42" Height="72"
 Text="Hello, XAML!" Margin="0,0,0,50"/>
</SwapChainBackgroundPanel>

A SwapChainBackgroundPanel is a component that lets the developer overlay XAML on top of the core DirectX-
based experience. Look, for example, at the FallFury main menu as the game runs in landscape mode:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.swapchainbackgroundpanel.aspx

5 | Fall Fury

The menu buttons, the label and the side curtains are designed and rendered entirely in XAML. The clouds in
the background, as well as the teddy bear, are rendered directly through the DirectX stack. The end-user does
not notice any difference in the way these elements interact or are displayed. From a development perspective,
however, there are several conditions that must be met.

There can only be one instance of SwapChainBackgroundPanel per app. Therefore, you can have only one
ÏÖÅÒÌÁÉÄ 8!-, ÃÏÎÔÒÏÌÓ ÓÅÔȢ 4ÈÉÓ ÄÏÅÓ ÎÏÔ ÍÅÁÎ ÔÈÁÔ ÙÏÕ ÃÁÎȭÔ ÈÁÖÅ ÍÕÌÔÉÐÌÅ ÃÏÎÔÒÏÌÓȟ ÂÕÔ ÉÔ ÉÍÐÌÉÅÓ ÔÈÁÔ to do so
you have to implement a control management flow that handles content adaptation. For example, if I invoke the
pause state in the game, I ÄÏÎȭÔ show the HUD but rather the screen-specific controls that let me resume or
abandon the game and the PAUSE label. This switch needs to be handled on both the DirectX and XAML
because a state change affects what is shown on the screen and what behaviors are tracked. As you will see
through this series, this is not too hard to implement with a helper class that will store the global game state,
that can be accessed from anywhere in the game.

When using SwapChainBackgroundPanel, remember that XAML is in all cases overlaid on top of the DirectX
renders. So, no matter what controls you are using, those will always be placed on top of what DirectX shows to
the user. For more details about how DirectX and XAML interoperate, check out this MSDN article.

Assets for the game

As with any other game, there is not only code involved in productionɂthere are also sound and graphical assets
that create a unique experience for the user. FallFury includes a wide variety of graphical assets designed by
Toledo Design as well as audio created by David Walliman .

It is important that all graphical resource requirements are established at the very beginning of development. As
I mentioned in the Design section of this article, I had to put together a list of all the game screens, power-ups,
obstacles, backgrounds, character states and possible particles that were generated from a texture. That way,
when the designer started creating the assets, all components blended together well and their styles were
compatible with the vision of the game.

http://msdn.microsoft.com/en-us/library/windows/apps/hh825871.aspx
http://ux.artu.tv/
http://davidwallimann.com/

6 | Fall Fury

While working on the assets, Arturo Toledo created multiple variations of the same set up that showed how
assets integrate in different game conditions:

As you follow this series, you will not have to create your own game assetsɂwe at Coding4Fun decided to
provide all graphical and audio assets, which you can download at http://fallfury.codeplex.com . We not only
provided you with the final PNG and DDS files, but also with the raw assets that can be used in Microsoft
Expression Design and Adobe Illustrator. ,ÅÔȭÓ ÔÁËÅ Á ÌÏÏË at what is in the package.

You will notice that the project Assets folder is split in several subfolders. All these assets are used mostly in the
XAML layer or in game conditions where texture/sound processing is not necessary. There is also an additional
asset folder I will discuss later.

¶ Backgrounds ɀthe level backgrounds, such as the blue, purple or red sky, as well as the overlays, such as

clouds that move simultaneously with the backgrounds. Each background/overlay combination is

assigned to a specific level type.

¶ Bear ɀ some of the bear elements that are displayed at different times in the game, such as when the

game is over or when the player wins the entire level set.

¶ HUD ɀ basic elements that are displayed during the game.

http://fallfury.codeplex.com/

7 | Fall Fury

¶ Icons ɀ the application icons, in a variety of sizes, required for a Windows Store application.

¶ Medals ɀ winning players are awarded a medal. It can be golden, silver, or bronze.

¶ Misc ɀ you get some branding elements as well as some graphics that are used in combination with other

game items, such as particles.

¶ Monsters ɀ monsters ÁÒÅ ÕÓÅÄ ÉÎ ÔÈÅ Ȱ(Ï× 4Ïȱ ÐÁÒÔ ÏÆ ÔÈÅ ÇÁÍÅȢ

¶ Music ɀ the long tracks used in different levels and screens.

¶ Sounds ɀ short sound clips used when different game behaviors in the game are triggered. For example,

when the bear gets hit, he lets out a brief cry.

All graphical assets mentioned here are PNG resources. The way I structured the game, some elements are larger
than the others and I needed to take some measures to cut down on the package size. PNGs are fairly well-sized
without much quality loss compared to raw images. At the beginning of the development process, all graphics
were stored in DDS files.

DirectDraw Surface, or DDS, is a file format developed by Microsoft that helps developers optimize some of the
graphics by avoiding re-compression performance loss. One of the benefits of using DDS files is the fact that
whenever they are processed by the GPU, the amount of memory taken by them is the same as the file size of the
DDS file itself. Usually, for 2D games the compression-based performance loss is not necessarily noticeable. For
PNG files used on the DirectX stack, resources are allocated to decompress the texture. Not so for DDS files.

Depending on the case, DDS files can be generated on the fly. FallFury preserves relatively small textures in DDS
format and larger ones, such as backgrounds, in PNG.)ÔȭÓ ÔÈÅ ÂÅÓÔ ÏÆ ÂÏÔÈ ×ÏÒÌÄÓ. DDS files can be generated by
a tool bundled with the DirectX SDK called dxtex (usually located in C:\Program Files (x86)\Microsoft DirectX
SDK (June 2010)\Utilities \bin\x64):

There is also texconv that allows you to create DDS components from the command line, but ×ÅȭÌÌ explore that
later in the series.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff553839(v=vs.85).aspx
http://www.microsoft.com/en-us/download/details.aspx?id=6812

